Skip to contents

This function plots ROC Curves with AUC values with 95% confidence range. It also works for multi-categorical models.

Usage

mplot_roc(
  tag,
  score,
  multis = NA,
  sample = 1000,
  model_name = NA,
  subtitle = NA,
  interval = 0.2,
  squared = TRUE,
  plotly = FALSE,
  save = FALSE,
  subdir = NA,
  file_name = "viz_roc.png"
)

Arguments

tag

Vector. Real known label.

score

Vector. Predicted value or model's result.

multis

Data.frame. Containing columns with each category probability or score (only used when more than 2 categories coexist).

sample

Integer. Number of samples to use for rendering plot.

model_name

Character. Model's name

subtitle

Character. Subtitle to show in plot

interval

Numeric. Interval for breaks in plot

squared

Boolean. Keep proportions?

plotly

Boolean. Use plotly for plot's output for an interactive plot

save

Boolean. Save output plot into working directory

subdir

Character. Sub directory on which you wish to save the plot

file_name

Character. File name as you wish to save the plot

Value

Plot with ROC curve and AUC performance results.

Examples

Sys.unsetenv("LARES_FONT") # Temporal
data(dfr) # Results for AutoML Predictions
lapply(dfr[c(1, 2)], head)
#> $class2
#>     tag    scores
#> 1  TRUE 0.3155498
#> 2  TRUE 0.8747599
#> 3  TRUE 0.8952823
#> 4 FALSE 0.0436517
#> 5  TRUE 0.2196593
#> 6 FALSE 0.2816101
#> 
#> $class3
#>   tag score        n_1        n_2        n_3
#> 1 n_3   n_2 0.20343865 0.60825062 0.18831071
#> 2 n_2   n_3 0.17856154 0.07657769 0.74486071
#> 3 n_1   n_1 0.50516951 0.40168718 0.09314334
#> 4 n_3   n_2 0.30880713 0.39062151 0.30057135
#> 5 n_2   n_3 0.01956827 0.07069011 0.90974158
#> 6 n_2   n_3 0.07830017 0.15408720 0.76761264
#> 

# ROC Curve for Binomial Model
mplot_roc(dfr$class2$tag, dfr$class2$scores,
  model_name = "Titanic Survived Model"
)


# ROC Curves for Multi-Categorical Model
mplot_roc(dfr$class3$tag, dfr$class3$score,
  multis = subset(dfr$class3, select = -c(tag, score)),
  squared = FALSE,
  model_name = "Titanic Class Model"
)