This function plots a confussion matrix.
Usage
mplot_conf(
tag,
score,
thresh = 0.5,
abc = TRUE,
squared = FALSE,
diagonal = TRUE,
top = 20,
subtitle = NA,
model_name = NULL,
save = FALSE,
subdir = NA,
file_name = "viz_conf_mat.png"
)
Arguments
- tag
Vector. Real known label.
- score
Vector. Predicted value or model's result.
- thresh
Integer. Threshold for selecting binary or regression models: this number is the threshold of unique values we should have in
'tag'
(more than: regression; less than: classification)- abc
Boolean. Arrange columns and rows alphabetically?
- squared
Boolean. Force plot to be squared?
- diagonal
Boolean.
FALSE
to convert diagonal numbers to zeroes. Ideal to detect must confusing categories.- top
Integer. Plot only the most n frequent variables. Set to
NA
to plot all.- subtitle
Character. Subtitle to show in plot
- model_name
Character. Model's name
- save
Boolean. Save output plot into working directory
- subdir
Character. Sub directory on which you wish to save the plot
- file_name
Character. File name as you wish to save the plot
Details
You may use conf_mat()
to get calculate values.
See also
Other ML Visualization:
mplot_cuts()
,
mplot_cuts_error()
,
mplot_density()
,
mplot_full()
,
mplot_gain()
,
mplot_importance()
,
mplot_lineal()
,
mplot_metrics()
,
mplot_response()
,
mplot_roc()
,
mplot_splits()
,
mplot_topcats()
Examples
Sys.unsetenv("LARES_FONT") # Temporal
data(dfr) # Results for AutoML Predictions
lapply(dfr, head)
#> $class2
#> tag scores
#> 1 TRUE 0.3155498
#> 2 TRUE 0.8747599
#> 3 TRUE 0.8952823
#> 4 FALSE 0.0436517
#> 5 TRUE 0.2196593
#> 6 FALSE 0.2816101
#>
#> $class3
#> tag score n_1 n_2 n_3
#> 1 n_3 n_2 0.20343865 0.60825062 0.18831071
#> 2 n_2 n_3 0.17856154 0.07657769 0.74486071
#> 3 n_1 n_1 0.50516951 0.40168718 0.09314334
#> 4 n_3 n_2 0.30880713 0.39062151 0.30057135
#> 5 n_2 n_3 0.01956827 0.07069011 0.90974158
#> 6 n_2 n_3 0.07830017 0.15408720 0.76761264
#>
#> $regr
#> tag score
#> 1 11.1333 25.93200
#> 2 30.0708 39.91900
#> 3 26.5500 50.72246
#> 4 31.2750 47.81292
#> 5 13.0000 30.12853
#> 6 26.0000 13.24153
#>
# Plot for Binomial Model
mplot_conf(dfr$class2$tag, dfr$class2$scores,
model_name = "Titanic Survived Model"
)
# Plot for Multi-Categorical Model
mplot_conf(dfr$class3$tag, dfr$class3$score,
model_name = "Titanic Class Model"
)