Skip to contents

This function lets us split and compare quantiles on a given prediction to compare different categorical values vs scores grouped by equal sized buckets.

Usage

mplot_splits(
  tag,
  score,
  splits = 5,
  subtitle = NA,
  model_name = NA,
  save = FALSE,
  subdir = NA,
  file_name = "viz_splits.png"
)

Arguments

tag

Vector. Real known label.

score

Vector. Predicted value or model's result.

splits

Integer. Number of separations to plot

subtitle

Character. Subtitle to show in plot

model_name

Character. Model's name

save

Boolean. Save output plot into working directory

subdir

Character. Sub directory on which you wish to save the plot

file_name

Character. File name as you wish to save the plot

Value

Plot with distribution and performance results by splits.

Examples

Sys.unsetenv("LARES_FONT") # Temporal
data(dfr) # Results for AutoML Predictions
lapply(dfr, head)
#> $class2
#>     tag    scores
#> 1  TRUE 0.3155498
#> 2  TRUE 0.8747599
#> 3  TRUE 0.8952823
#> 4 FALSE 0.0436517
#> 5  TRUE 0.2196593
#> 6 FALSE 0.2816101
#> 
#> $class3
#>   tag score        n_1        n_2        n_3
#> 1 n_3   n_2 0.20343865 0.60825062 0.18831071
#> 2 n_2   n_3 0.17856154 0.07657769 0.74486071
#> 3 n_1   n_1 0.50516951 0.40168718 0.09314334
#> 4 n_3   n_2 0.30880713 0.39062151 0.30057135
#> 5 n_2   n_3 0.01956827 0.07069011 0.90974158
#> 6 n_2   n_3 0.07830017 0.15408720 0.76761264
#> 
#> $regr
#>       tag    score
#> 1 11.1333 25.93200
#> 2 30.0708 39.91900
#> 3 26.5500 50.72246
#> 4 31.2750 47.81292
#> 5 13.0000 30.12853
#> 6 26.0000 13.24153
#> 

# For categorical (binary) values
mplot_splits(dfr$class2$tag, dfr$class2$scores,
  splits = 4,
  model_name = "Titanic Survived Model"
)


# For categorical (+2) values
mplot_splits(dfr$class3$tag, dfr$class2$scores,
  model_name = "Titanic Class Model"
)


# For continuous values
mplot_splits(dfr$regr$tag, dfr$regr$score,
  splits = 4,
  model_name = "Titanic Fare Model"
)