Skip to contents

This function plots a whole dashboard with a model's results. It will automatically detect if it's a categorical or regression's model by checking how many different unique values the dependent variable (tag) has.

Usage

mplot_full(
  tag,
  score,
  multis = NA,
  splits = 8,
  thresh = 6,
  subtitle = NA,
  model_name = NA,
  plot = TRUE,
  save = FALSE,
  subdir = NA,
  file_name = "viz_full.png"
)

Arguments

tag

Vector. Real known label.

score

Vector. Predicted value or model's result.

multis

Data.frame. Containing columns with each category probability or score (only used when more than 2 categories coexist).

splits

Integer. Number of separations to plot

thresh

Integer. Threshold for selecting binary or regression models: this number is the threshold of unique values we should have in 'tag' (more than: regression; less than: classification)

subtitle

Character. Subtitle to show in plot

model_name

Character. Model's name

plot

Boolean. Plot results? If not, plot grid object returned

save

Boolean. Save output plot into working directory

subdir

Character. Sub directory on which you wish to save the plot

file_name

Character. File name as you wish to save the plot

Value

Multiple plots gathered into one, showing tag vs score performance results.

Examples

# \donttest{
Sys.unsetenv("LARES_FONT") # Temporal
data(dfr) # Results for AutoML Predictions
lapply(dfr, head)
#> $class2
#>     tag    scores
#> 1  TRUE 0.3155498
#> 2  TRUE 0.8747599
#> 3  TRUE 0.8952823
#> 4 FALSE 0.0436517
#> 5  TRUE 0.2196593
#> 6 FALSE 0.2816101
#> 
#> $class3
#>   tag score        n_1        n_2        n_3
#> 1 n_3   n_2 0.20343865 0.60825062 0.18831071
#> 2 n_2   n_3 0.17856154 0.07657769 0.74486071
#> 3 n_1   n_1 0.50516951 0.40168718 0.09314334
#> 4 n_3   n_2 0.30880713 0.39062151 0.30057135
#> 5 n_2   n_3 0.01956827 0.07069011 0.90974158
#> 6 n_2   n_3 0.07830017 0.15408720 0.76761264
#> 
#> $regr
#>       tag    score
#> 1 11.1333 25.93200
#> 2 30.0708 39.91900
#> 3 26.5500 50.72246
#> 4 31.2750 47.81292
#> 5 13.0000 30.12853
#> 6 26.0000 13.24153
#> 

# Dasboard for Binomial Model
mplot_full(dfr$class2$tag, dfr$class2$scores,
  model_name = "Titanic Survived Model"
)


# Dasboard for Multi-Categorical Model
mplot_full(dfr$class3$tag, dfr$class3$score,
  multis = subset(dfr$class3, select = -c(tag, score)),
  model_name = "Titanic Class Model"
)


# Dasboard for Regression Model
mplot_full(dfr$regr$tag, dfr$regr$score,
  model_name = "Titanic Fare Model"
)
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.

# }