This function lets the user quickly calculate cuts for quantiles and discretize numerical values into categorical values.
Value
Factor vector or data.frame. Depending on return input:
labelsa factor ordered vector with each observation's quantilesummarya data.frame with information on each quantile cut
See also
Other Data Wrangling:
balance_data(),
categ_reducer(),
cleanText(),
date_cuts(),
date_feats(),
file_name(),
formatHTML(),
holidays(),
impute(),
left(),
normalize(),
num_abbr(),
ohe_commas(),
ohse(),
removenacols(),
replaceall(),
replacefactor(),
textFeats(),
textTokenizer(),
vector2text(),
year_month(),
zerovar()
Other Calculus:
corr(),
dist2d(),
model_metrics()
Examples
data(dft) # Titanic dataset
quants(dft$Age, splits = 5, "summary")
#> percentile cut label
#> 20% 20% 19.0 [19-19]
#> 40% 40% 25.0 (19-25]
#> 60% 60% 31.8 (25-32]
#> 80% 80% 41.0 (32-41]
#> 100% 100% 80.0 (41-80]
quants(dft$Age, splits = 5, "labels")[1:10]
#> [1] (19,25] (32,41] (25,32] (32,41] (32,41] <NA> (41,80]
#> [8] [0.42,19] (25,32] [0.42,19]
#> Levels: [0.42,19] < (19,25] < (25,32] < (32,41] < (41,80]
