Skip to contents

This function lets the user get a confusion matrix and accuracy, and for for binary classification models: AUC, Precision, Sensitivity, and Specificity, given the expected (tags) values and predicted values (scores).

Usage

model_metrics(
  tag,
  score,
  multis = NA,
  abc = TRUE,
  thresh = 10,
  auto_n = TRUE,
  thresh_cm = 0.5,
  target = "auto",
  type = "test",
  model_name = NA,
  plots = TRUE,
  quiet = FALSE,
  subtitle = NA
)

Arguments

tag

Vector. Real known label

score

Vector. Predicted value or model's result

multis

Data.frame. Containing columns with each category score (only used when more than 2 categories coexist)

abc

Boolean. Arrange columns and rows alphabetically when categorical values?

thresh

Integer. Threshold for selecting binary or regression models: this number is the threshold of unique values we should have in 'tag' (more than: regression; less than: classification)

auto_n

Add n_ before digits when it's categorical and not numerical, even though seems numerical?

thresh_cm

Numeric. Value to splits the results for the confusion matrix. Range of values: (0-1)

target

Value. Which is your target positive value? If set to 'auto', the target with largest mean(score) will be selected. Change the value to overwrite. Only used when binary categorical model.

type

Character. One of: "train", "test".

model_name

Character. Model's name for reference.

plots

Boolean. Create plots objects?

quiet

Boolean. Quiet all messages, warnings, recommendations?

subtitle

Character. Subtitle for plots

Value

List. Multiple performance metrics that vary depending on the type of model (classification or regression). If plot=TRUE, multiple plots are also returned.

See also

Other Machine Learning: ROC(), conf_mat(), export_results(), gain_lift(), h2o_automl(), h2o_predict_MOJO(), h2o_selectmodel(), impute(), iter_seeds(), lasso_vars(), model_preprocess(), msplit()

Other Model metrics: ROC(), conf_mat(), errors(), gain_lift(), loglossBinary()

Other Calculus: corr(), dist2d(), quants()

Examples

data(dfr) # Results for AutoML Predictions
lapply(dfr, head)
#> $class2
#>     tag    scores
#> 1  TRUE 0.3155498
#> 2  TRUE 0.8747599
#> 3  TRUE 0.8952823
#> 4 FALSE 0.0436517
#> 5  TRUE 0.2196593
#> 6 FALSE 0.2816101
#> 
#> $class3
#>   tag score        n_1        n_2        n_3
#> 1 n_3   n_2 0.20343865 0.60825062 0.18831071
#> 2 n_2   n_3 0.17856154 0.07657769 0.74486071
#> 3 n_1   n_1 0.50516951 0.40168718 0.09314334
#> 4 n_3   n_2 0.30880713 0.39062151 0.30057135
#> 5 n_2   n_3 0.01956827 0.07069011 0.90974158
#> 6 n_2   n_3 0.07830017 0.15408720 0.76761264
#> 
#> $regr
#>       tag    score
#> 1 11.1333 25.93200
#> 2 30.0708 39.91900
#> 3 26.5500 50.72246
#> 4 31.2750 47.81292
#> 5 13.0000 30.12853
#> 6 26.0000 13.24153
#> 

# Metrics for Binomial Model
met1 <- model_metrics(dfr$class2$tag, dfr$class2$scores,
  model_name = "Titanic Survived Model",
  plots = FALSE
)
#> Target value: TRUE
print(met1)
#> $dictionary
#> [1] "AUC: Area Under the Curve"                                                             
#> [2] "ACC: Accuracy"                                                                         
#> [3] "PRC: Precision = Positive Predictive Value"                                            
#> [4] "TPR: Sensitivity = Recall = Hit rate = True Positive Rate"                             
#> [5] "TNR: Specificity = Selectivity = True Negative Rate"                                   
#> [6] "Logloss (Error): Logarithmic loss [Neutral classification: 0.69315]"                   
#> [7] "Gain: When best n deciles selected, what % of the real target observations are picked?"
#> [8] "Lift: When best n deciles selected, how much better than random is?"                   
#> 
#> $confusion_matrix
#>        Pred
#> Real    FALSE TRUE
#>   FALSE     9  156
#>   TRUE     68   35
#> 
#> $gain_lift
#> # A tibble: 10 × 10
#>    percentile value random target total  gain optimal  lift response score
#>    <fct>      <fct>  <dbl>  <int> <int> <dbl>   <dbl> <dbl>    <dbl> <dbl>
#>  1 1          TRUE    10.4     26    28  25.2    27.2 142.     25.2  93.3 
#>  2 2          TRUE    20.5     24    27  48.5    53.4 137.     23.3  79.7 
#>  3 3          TRUE    30.2     19    26  67.0    78.6 122.     18.4  46.2 
#>  4 4          TRUE    39.9     12    26  78.6   100    97.0    11.7  31.5 
#>  5 5          TRUE    50        9    27  87.4   100    74.8     8.74 19.8 
#>  6 6          TRUE    60.1      5    27  92.2   100    53.5     4.85 13.3 
#>  7 7          TRUE    69.8      3    26  95.1   100    36.4     2.91  9.31
#>  8 8          TRUE    79.9      2    27  97.1   100    21.6     1.94  7.49
#>  9 9          TRUE    89.9      3    27 100     100    11.2     2.91  6.14
#> 10 10         TRUE   100        0    27 100     100     0       0     3.19
#> 
#> $metrics
#>       AUC     ACC     PRC     TPR      TNR
#> 1 0.89467 0.16418 0.18325 0.33981 0.054545
#> 

# Metrics for Multi-Categorical Model
met2 <- model_metrics(dfr$class3$tag, dfr$class3$score,
  multis = subset(dfr$class3, select = -c(tag, score)),
  model_name = "Titanic Class Model",
  plots = FALSE
)
print(met2)
#> $dictionary
#> [1] "AUC: Area Under the Curve"                                                             
#> [2] "ACC: Accuracy"                                                                         
#> [3] "PRC: Precision = Positive Predictive Value"                                            
#> [4] "TPR: Sensitivity = Recall = Hit rate = True Positive Rate"                             
#> [5] "TNR: Specificity = Selectivity = True Negative Rate"                                   
#> [6] "Logloss (Error): Logarithmic loss [Neutral classification: 0.69315]"                   
#> [7] "Gain: When best n deciles selected, what % of the real target observations are picked?"
#> [8] "Lift: When best n deciles selected, how much better than random is?"                   
#> 
#> $confusion_matrix
#> # A tibble: 3 × 4
#>   `Real x Pred`   n_3   n_1   n_2
#>   <fct>         <int> <int> <int>
#> 1 n_3             120    11    18
#> 2 n_1              12    43     8
#> 3 n_2              26    15    15
#> 
#> $metrics
#>      AUC     ACC
#> 1 0.7896 0.66418
#> 
#> $metrics_tags
#> # A tibble: 3 × 9
#>   tag       n     p   AUC order   ACC   PRC   TPR   TNR
#>   <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 n_3     149  55.6 0.826     1 0.75  0.759 0.805 0.681
#> 2 n_1      63  23.5 0.867     2 0.828 0.623 0.683 0.873
#> 3 n_2      56  20.9 0.675     3 0.75  0.366 0.268 0.877
#> 

# Metrics for Regression Model
met3 <- model_metrics(dfr$regr$tag, dfr$regr$score,
  model_name = "Titanic Fare Model",
  plots = FALSE
)
print(met3)
#> $dictionary
#> [1] "RMSE: Root Mean Squared Error"       
#> [2] "MAE: Mean Average Error"             
#> [3] "MAPE: Mean Absolute Percentage Error"
#> [4] "MSE: Mean Squared Error"             
#> [5] "RSQ: R Squared"                      
#> [6] "RSQA: Adjusted R Squared"            
#> 
#> $metrics
#>       rmse      mae       mape      mse    rsq   rsqa
#> 1 20.30881 14.24359 0.07303959 412.4477 0.3169 0.3143
#>