This function lets the user calculate all errors and R squared simultaneously.
This function lets the user calculate Root Mean Squared Error
This function lets the user calculate Mean Absolute Error
This function lets the user calculate Mean Squared Error
This function lets the user calculate Mean Squared Error
This function lets the user calculate R Squared
This function lets the user calculate Adjusted R Squared
Usage
errors(tag, score)
rmse(tag, score)
mae(tag, score)
mse(tag, score)
mape(tag, score)
rsq(tag, score)
rsqa(tag, score)
Value
data.frame or numeric values results for multiple error metrics on continuous numerical vectors inputs.
See also
Other Model metrics:
ROC()
,
conf_mat()
,
gain_lift()
,
loglossBinary()
,
model_metrics()
Examples
data(dfr) # Results for AutoML Predictions
head(dfr$regr)
#> tag score
#> 1 11.1333 25.93200
#> 2 30.0708 39.91900
#> 3 26.5500 50.72246
#> 4 31.2750 47.81292
#> 5 13.0000 30.12853
#> 6 26.0000 13.24153
df <- errors(dfr$regr$tag, dfr$regr$score)
head(df)
#> rmse mae mape mse rsq rsqa
#> 1 20.30881 14.24359 0.07303959 412.4477 0.3169 0.3143