This function lets the user replace levels on a factor vector.
See also
Other Data Wrangling:
balance_data()
,
categ_reducer()
,
cleanText()
,
date_cuts()
,
date_feats()
,
file_name()
,
formatHTML()
,
holidays()
,
impute()
,
left()
,
normalize()
,
num_abbr()
,
ohe_commas()
,
ohse()
,
quants()
,
removenacols()
,
replaceall()
,
textFeats()
,
textTokenizer()
,
vector2text()
,
year_month()
,
zerovar()
Examples
library(dplyr)
#>
#> ######################### Warning from 'xts' package ##########################
#> # #
#> # The dplyr lag() function breaks how base R's lag() function is supposed to #
#> # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
#> # source() into this session won't work correctly. #
#> # #
#> # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
#> # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
#> # dplyr from breaking base R's lag() function. #
#> # #
#> # Code in packages is not affected. It's protected by R's namespace mechanism #
#> # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
#> # #
#> ###############################################################################
#>
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:xts’:
#>
#> first, last
#> The following objects are masked from ‘package:stats’:
#>
#> filter, lag
#> The following objects are masked from ‘package:base’:
#>
#> intersect, setdiff, setequal, union
data(dft)
# Replace a single value
dft <- mutate(dft, Pclass = replacefactor(Pclass, original = "1", change = "First"))
levels(dft$Pclass)
#> [1] "First" "2" "3"
# Replace multiple values
dft <- mutate(dft, Pclass = replacefactor(Pclass, c("2", "3"), c("Second", "Third")))
levels(dft$Pclass)
#> [1] "First" "Second" "Third"