Plot frequencies of multiple categories within a data.frame in
a new fancy way. Tidyverse friendly, based on lares::freqs()
,
no limits on amount of features to evaluate.
Arguments
- df
Data.frame
- ...
Variables. Variables you wish to process. Order matters. If no variables are passed, the whole data.frame will be considered
- top
Integer. Filter and plot the most n frequent for categorical values. Set to NA to return all values
- rm.na
Boolean. Remove NA values in the plot? (not filtered for numerical output; use na.omit() or filter() if needed)
- abc
Boolean. Do you wish to sort by alphabetical order?
- title
Character. Overwrite plot's title with.
- subtitle
Character. Overwrite plot's subtitle with.
See also
Other Frequency:
freqs()
,
freqs_df()
,
freqs_list()
Other Exploratory:
corr_cross()
,
corr_var()
,
crosstab()
,
df_str()
,
distr()
,
freqs()
,
freqs_df()
,
freqs_list()
,
lasso_vars()
,
missingness()
,
plot_cats()
,
plot_df()
,
plot_nums()
,
tree_var()
Other Visualization:
distr()
,
freqs()
,
freqs_df()
,
freqs_list()
,
noPlot()
,
plot_chord()
,
plot_survey()
,
plot_timeline()
,
tree_var()
Examples
Sys.unsetenv("LARES_FONT") # Temporal
data(dft) # Titanic dataset
df <- freqs_plot(dft, Pclass, Survived)
head(df$data)
#> # A tibble: 6 × 7
#> order n p pcum name value label
#> <chr> <int> <dbl> <dbl> <chr> <chr> <chr>
#> 1 6 80 8.98 100 Pclass 1 Pclass: 1
#> 2 6 80 8.98 100 Survived FALSE Survived: FALSE
#> 3 5 87 9.76 91.0 Pclass 2 Pclass: 2
#> 4 5 87 9.76 91.0 Survived TRUE Survived: TRUE
#> 5 4 97 10.9 81.3 Pclass 2 Pclass: 2
#> 6 4 97 10.9 81.3 Survived FALSE Survived: FALSE
plot(df)
freqs_plot(dft, Pclass, Survived, Sex, Embarked)
#> Showing 10 most frequent values. Tail of 22 other values grouped into one
freqs_plot(dft, Pclass, Survived, Sex, Embarked, top = 15)
#> Showing 15 most frequent values. Tail of 17 other values grouped into one